强核力场的厘米级尺度调制方程:
Fstrong(r)=gs24πr2?[1?exp?(?rΛqcd)]?Fent(r)F_{\text{strong}}(r) = \frac{g_s^2}{4\pi r^2} \cdot \left[1 - \exp\left(-\frac{r}{\Lambda_{\text{qcd}}}\right)\right] \cdot \mathcal{F}_{\text{ent}}(r)Fstrong (r)=4πr2gs2 ?[1?exp(?Λqcd r )]?Fent (r)
参数g_s:强核力耦合常数,大约1.2。
Λqcd\Lambda_{\text{qcd}}Λqcd :qcd标度参数(约200 meV)
Fent(r)\mathcal{F}_{\text{ent}}(r)Fent (r):量子纠缠修正项,r为核子间距。
2. 电磁场-引力耦合方程,伽马射线-强核力共振激发频率:
wres=2πcλres=gs2?Efission??0?(1+Gmcatc2rcat)\omega_{\text{res}} = \frac{2\pi c}{\lambda_{\text{res}}} = \sqrt{\frac{g_s^2 \cdot \mathcal{E}{\text{fission}}}{\hbar \epsilon_0}} \cdot \left(1 + \frac{G m{\text{cat}}}{c^2 r_{\text{cat}}}\right)wres =λres 2πc =??0 gs2 ?Efission ?(1+c2rcat Gmcat )
参数:λres\lambda_{\text{res}}λres :共振波长
?0\epsilon_0?0 :真空介电常数
mcatm_{\text{cat}}mcat :反物质催化剂质量
rcatr_{\text{cat}}rcat :催化剂与核反应区距离
相干电磁场束相位锁定条件,SqUId阵列:
Δ?SqUId=2πΦ0∮A?dl=2πn(n∈Z)\delta \phi_{\text{SqUId}} = \frac{2\pi}{\phi_0} \oint \mathbf{A} \cdot d\mathbf{l} = 2\pi n \quad (n \in \mathbb{Z})Δ?SqUId =Φ0 2π ∮A?dl=2πn(n∈Z)
参数:Φ0=h/2e\phi_0 = h/2eΦ0 =h/2e:磁通量子
A\mathbf{A}A:电磁矢量势
3. 引力-电磁耦合方程,反物质引力透镜能量压缩比:
pGEb=pEm?(1+4GmAmpEmc4)?1?ctopo\rho_{\text{GEb}} = \rho_{\text{Em}} \cdot \left(1 + \frac{4 G m_{\text{Am}} \rho_{\text{Em}}}{c^4}\right)^{-1} \cdot \mathcal{c}_{\text{topo}}pGEb =pEm ?(1+c44GmAm pEm )?1?ctopo
参数:pEm\rho_{\text{Em}}pEm :电磁场束能量密度
mAmm_{\text{Am}}mAm :反物质质量
ctopo\mathcal{c}_{\text{topo}}ctopo :拓扑量子计算修正因子(0 <ctopo\mathcal{c}_{\text{topo}}ctopo < 1)
引力子信息包编码效率,时空折叠传输:
ηgrav=?wgravmAmc2?(1?Rsremit)\eta_{\text{grav}} = \frac{\hbar \omega_{\text{grav}}}{m_{\text{Am}} c^2} \cdot \left(1 - \frac{R_s}{r_{\text{emit}}}\right)ηgrav =mAm c2?wgrav ?(1?remit Rs )
参数:wgrav\omega_{\text{grav}}wgrav :引力波频率
Rs=2GmAm/c2R_s = 2Gm_{\text{Am}}/c^2Rs =2GmAm /c2:反物质模拟黑洞的史瓦西半径
remitr_{\text{emit}}remit :发射端与模拟黑洞距离
第二、关键技术突破的数学描述。
1. 量子纠缠态核反应堆,链式反应速率调控方程,基于量子退火算法:
dNdt=[σfΦ?λ?Γent?sin?2(πt2tent)]N(t)\frac{dN}{dt} = \left[\sigma_f \phi - \lambda - \Gamma_{\text{ent}} \cdot \sin^2\left(\frac{\pi t}{2\tau_{\text{ent}}}\right)\right] N(t)dtdN =[σf Φ?λ?Γent ?sin2(2tent πt )]N(t)
参数:Γent\Gamma_{\text{ent}}Γent :量子纠缠调控强度
tent\tau_{\text{ent}}tent :纠缠态退相干时间
纠缠态场能输出谱,微波至伽马射线:
dEentdw=?w3π2c3?Γent2(w?wres)2+Γent2?pqd(w)\frac{d\mathcal{E}{\text{ent}}}{d\omega} = \frac{\hbar \omega^3}{\pi^2 c^3} \cdot \frac{\Gamma{\text{ent}}^2}{(\omega - \omega_{\text{res}})^2 + \Gamma_{\text{ent}}^2} \cdot \mathcal{p}_{\text{qd}}(\omega)dwdEent =π2c3?w3 ?(w?wres )2+Γent2 Γent2 ?pqd (w)
参数:pqd(w)\mathcal{p}_{\text{qd}}(\omega)pqd (w):量子退火算法的功率谱密度
2. 强核力-电磁场共振腔,腔体谐振频率,六方氮化硼纳米管阵列:
wcav=c?bNμ0?(mπa)2+(nπb)2+(pπd)2\omega_{\text{cav}} = \frac{c}{\sqrt{\epsilon_{\text{bN}} \mu_0}} \cdot \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + \left(\frac{p\pi}{d}\right)^2}wcav =?bN μ0 c ?(amπ )2+(bnπ )2+(dpπ )2
参数:?bN\epsilon_{\text{bN}}?bN :六方氮化硼介电常数
a,b,da, b, da,b,d:纳米管阵列周期
m,n,pm, n, pm,n,p:谐振模式量子数
反物质催化剂库仑势垒穿透概率,量子隧穿效应:
ptunnel=exp?(?2?∫r0r12mion(V(r)?Ekin)dr)p_{\text{tunnel}} = \exp\left(-\frac{2}{\hbar} \int_{r_0}^{r_1} \sqrt{2m_{\text{ion}} \left(V(r) - E_{\text{kin}}\right)} dr\right)ptunnel =exp(??2 ∫r0 r1 2mion (V(r)?Ekin ) dr)
参数:mionm_{\text{ion}}mion :核子质量
V(r)V(r)V(r):库仑势垒
EkinE_{\text{kin}}Ekin :核子动能
3. 引力透镜无线输电系统,时空折叠传输延迟:
Δtgrav=2c[remit1?Rsremit+Rsln?(remitRs+remit2Rs2?1)]\delta t_{\text{grav}} = \frac{2}{c} \left[ r_{\text{emit}} \sqrt{1 - \frac{R_s}{r_{\text{emit}}}} + R_s \ln\left(\frac{r_{\text{emit}}}{R_s} + \sqrt{\frac{r_{\text{emit}}^2}{R_s^2} - 1}\right) \right]Δtgrav =c2 [remit 1?remit Rs +Rs ln(Rs remit +Rs2 remit2 ?1 )]
拓扑绝缘体解调效率,量子霍尔效应:
ηtI=e2h?σxyσxx2+σxy2?(1?ttc)2\eta_{\text{tI}} = \frac{e^2}{h} \cdot \frac{\sigma_{xy}}{\sigma_{xx}^2 + \sigma_{xy}^2} \cdot \left(1 - \frac{t}{t_c}\right)^2ηtI =he2 ?σxx2 +σxy2 σxy ?(1?tc t )2
参数:σxy\sigma_{xy}σxy :霍尔电导率
σxx\sigma_{xx}σxx :纵向电导率
t_c:拓扑绝缘体临界温度……”